

 1

Modification of a Reward-Modulated Hebbian 2

Learning Rule as a Model of Working Memory 3

Emergence 4

 5

 6

Tammy Tran Brad Theilman Nuttida Rungratsameetaweemana 7

Neurosciences Graduate Program, University of California, San Diego 8

ttt075@ucsd.edu, btheilma@ucsd.edu, nrungrat@ucsd.edu 9

 10

 11

Abstract 12

In liquid state machines with generic cortical microcircuits, synaptic plasticity 13
can be optimized by reward-modulated Hebbian learning, eliminating the need 14
for supervised learning (Hoerzer, Legenstein, and Maass, 2014). Reward-15
modulated Hebbian learning can thus lead to autonomous emergence of task-16
specific working memory during the learning of computational rules. However, 17
in Hoerzer, Legenstein, and Maass (2014), reward-modulated Hebbian learning 18
was modeled with an all-or-none modulatory signal that permitted synaptic 19
weight change only above a criterion level of learning. We use liquid computing 20
models to investigate working memory emergence via Hebbian learning with 21
non-binary modulatory signals. We implement a nonbinary, but discrete 22
modulatory signal and an analog signal. In doing so, we model physiological 23
conditions of tonic and phasic output of reward-mediating systems like the 24
dopaminergic system. We find that the effects of analog modulatory signals on 25
working memory emergence improve reward-modulated Hebbian learning in 26
liquid state machines. We propose that reward-modulated Hebbian learning in 27
generic microcircuits of neurons can abstractly model general cognitive 28
processes. 29

 30

1 Introduction 31

The liquid state machine (LSM) is a conceptual framework that assumes generic recurrent neural 32
microcircuits where neurons are randomly connected to one another. Specifically, the vector of 33
contributions of all the neurons in the microcircuit to the membrane potential at time t of a readout 34
neuron is referred to as the liquid state x(t), and this is all the information about the circuit state a 35
readout neuron has access to [3]. The LSMs do not require task-dependent constructions and need 36
not be engineered for a specific task, and hence this framework can be used to investigate a wide 37
range of computational tasks. The liquid state of an LSM is assumed to vary continuously over 38
time and to be sufficiently sensitive to information needed for specific tasks. In addition to this 39
universal computing power, the LSM framework has a capability of turning time-varying circuit 40
inputs into spatio-temporal activity pattern that represents the circuit dynamics. These 41
characteristics make it possible for researchers to train LSMs to fulfill a large variety of complex 42
computational tasks. 43

While past studies have shown that the LSMs can successfully be trained to learn several different 44
tasks, the training paradigms generally provide the microcircuits with knowledge of the desired 45
activity output (supervised learning). This type of learning also presupposes another neural 46
network that is capable of a particular computational task used, and thus cannot explain how 47
specialization first emerges. Additionally, the feedback provided in supervised learning represents 48
global activity of the entire network rather than localized dynamical activity of specific neurons, 49
resulting in physiologically inaccurate network outputs. Due to these pitfalls of supervised 50
learning, the present study examines working memory emergence by training recurrent neural 51
networks through unsupervised, reward-modulated Hebbian learning, where feedback provided to 52
the neural network represents local activity between the pre- and postsynaptic neurons. 53

 54

2 Methods 55

To test working memory emergence via reward-modulated Hebbian learning in recurrent neural 56
networks, a generic network model was implemented as previously described [1]. Leaky integrator 57
neurons (N = 1000) were sparsely, recurrently connected. Two external input streams ui(t) were 58
provided to the recurrent neurons, and the recurrent neurons provided output to a single readout 59
neuron, which in turn provided feedback to the recurrent network. All neurons were connected or 60
received input or feedback with probability p of 0.1. Synaptic weights between recurrent neurons 61
(Wrec) were randomly drawn from Gaussian distributions with zero mean and 1/(pN) variance. 62
Input and feedback weights (Win and Wfb) were drawn from uniform distributions in [-1, 1]. 63
Output weights w to the readout neuron were initialized to zero and adjusted during training. 64

Membrane potentials xj(t) per recurrent neuron j were initialized to zero, and network dynamics 65
per simulation time-step dt = 1ms is given by 66

𝜏𝑑𝑥𝑖

𝑑𝑡
= −𝑥𝑖(𝑡) + 𝜆 ∑ 𝑊𝑖𝑗

𝑟𝑒𝑐𝑟𝑗(𝑡) +𝑁
𝑖=1 ∑ 𝑊𝑖𝑗

𝑖𝑛𝑢𝑗(𝑡) + ∑ 𝑊𝑖𝑗
𝑓𝑏

𝑧𝑗(𝑡)𝐿
𝑖=1

𝑀
𝑖=1 67

per recurrent neuron i. The chaoticity level λ was 1.2, and the network constant τ was 50ms. 68

The firing rate ri(t) per recurrent neuron j is given by 𝑟𝑗(𝑡) = tanh[𝑥𝑗(𝑡)] + 𝜁𝑗
𝑠𝑡𝑎𝑡𝑒(𝑡), with the 69

noise 𝜁𝑗
𝑠𝑡𝑎𝑡𝑒(𝑡) drawn from uniform distributions in [-0.05, 0.05]. 70

Output at the readout neuron is given by 𝑧(𝑡) = 𝒘𝑻𝒓(𝒕) + 𝜁(𝑡), where r(t) is the column vector of 71
firing rates rj(t) and the zero-mean exploration noise 𝜁(𝑡) was drawn independently at each time 72
step from uniform distributions in [-0.5, 0.5]. 73

Weight change for w(t) for each dt is given by ∆𝑤(𝑡) = 𝜂(𝑡)[𝑧(𝑡) − 𝑧𝑎𝑣𝑔(𝑡)]𝑀(𝑡)𝑟(𝑡). 74

𝜂(𝑡) =
𝜂𝑖𝑛𝑖𝑡

1+
𝑡

𝑇

 is a linearly decaying learning rate with 𝜂𝑖𝑛𝑖𝑡= 0.0005 and T = 20s. zavg(t) is the 75

average readout output given by 𝑧𝑎𝑣𝑔(𝑡) = (1 −
𝑑𝑡

𝜏𝑎𝑣𝑔
) 𝑧𝑎𝑣𝑔(𝑡 − 𝑑𝑡) + (

𝑑𝑡

𝜏𝑎𝑣𝑔
) 𝑧𝑖(𝑡), with 𝜏𝑎𝑣𝑔 =76

5𝑚𝑠. Initially, M(t) is a binary modulatory signal of 1 if performance P(t) > Pavg(t), 0 otherwise. 77
Performance P(t) is given by 𝑃(𝑡) = − ∑ [𝑧(𝑡) − 𝑓(𝑡)]2𝐿

𝑖=1 where f(t) is the target output of the 78

readout neuron. 𝑃𝑎𝑣𝑔(𝑡) is given by 𝑃𝑎𝑣𝑔(𝑡) = (1 −
𝑑𝑡

𝜏𝑎𝑣𝑔
) 𝑃𝑎𝑣𝑔(𝑡 − 𝑑𝑡) + (

𝑑𝑡

𝜏𝑎𝑣𝑔
) 𝑃(𝑡). 79

For the working memory computational task described previously, input streams 𝑢𝑜�̂�(𝑡) and 80
𝑢𝑜�̂�(𝑡) were independently set to 1 with probability 0.0005, zero otherwise [1]. The pulses were 81
then smoothed to amplitude 0.4 and duration 100ms. Thus, 𝑢𝑜𝑛(𝑡) =

1

𝜎𝑢
(𝜃0 𝑜 (�̂�𝑜𝑛 ∗ ℎ)) ∗ 𝑔, 82

and uoff(t) is similarly constructed with 𝑢𝑜�̂�(𝑡). The functions g and h are g(s) = exp(-s/τL)θ1(s) and 83
h(s) = θ1(s) – θ1(s – 100ms), with τL = 50ms and θx(s) being the Heaviside function equal to 0 for x 84
< 0, x for s = 0, and 1 otherwise. The target function 𝑓(𝑡) =

1

𝜎𝑓
𝑓(𝑡) ∗ 𝑔 with amplitude 0.5 for the 85

readout neuron was then a smoothed version of 𝑓(𝑡) = 0.5 𝑖𝑓 �̂�𝑜𝑛(𝑡) = 1, 0.5 𝑖𝑓 �̂�𝑜𝑛(𝑡) = 1, and 86
𝑓𝑖(𝑡 − 𝑑𝑡) otherwise. 87

3 Results 88

3.1 Reproduction of Hoezer, Legenstein, and Maass’s model 89

This study began by recreating some of the main results from [1], namely, the production of 90
periodic signals and a simple working memory task. We created a 1000 neuron recurrent neural 91
network with dynamics identical to the model in [1] and trained the network to recreate a periodic 92
function consisting of the sum of five sine waves of differing frequencies. The network was 93
trained using the binary reward modulation signal for 500 seconds of simulation time. The figure 94
below compares the output of the network after training and the target function. It can be seen that 95
the network reproduces the target function closely, but over time the phase drifts away from the 96
perfectly periodic target function. 97

 98

 99

 100

 101

 102

 103

 104

 105

 106

 107

Figure 1. Comparison between the network output after training and the periodic target function 108
when using a binary modulatory signal 109

 110

Next, we trained the same network to perform the simple working memory task from the [1]. Two 111
input streams were connected to the network with random, uniformly distributed weights to each 112
neuron in the network. The readout output was trained to drive to a high value (0.5) when the most 113
recent input stream that was active was input stream “on”, and to drive to a low output (-0.5) when 114
the most recent active input stream was stream “off”. The figure below shows the output of the 115
network compared to a target function that idealizes the desired outcome of the task: 116

 117

 118

 119

 120

 121

 122

 123

 124

 125

 126

 127

 128

Figure 2. Comparison between the network output after training and the working memory target 129
function when using a binary modulatory signal 130

While the state transitions are clear and correct, the network transiently deviates from the target 131
function. These deviations are artifacts of the input stream activations and are present because 132
network dynamics are not instantaneous. Taken together, these results show that our model 133
successfully reproduces the key results of [1]. Thus, our model can be used as a platform upon 134
which to investigate how dopamine-like reward signals modulating Hebbian learning affect 135
learning in liquid state machines. 136

 137

3.2 Modification of the modulatory signal 138

3.2.1 Implementing a nonbinary, but discrete modulatory signal 139

While M(t) = 0 or 1 distinguishes between absent and high transmission of a reward signal, a 140
binary signal does not accurately reflect physiological transmission of reward signals like 141
dopamine. In reality, dopamine transmission is both phasic and tonic, with some persistent, 142
baseline dopamine tone at all times. In addition, phasic dopamine transmission can vary in 143
amplitude, exhibiting characteristics of an analog signal. Therefore, to better represent 144
physiological reward signals, we altered M(t) and tested the network’s performance in the simple 145
working memory task from [1]. 146

First, M(t) was altered such that M(t) = 0.9 at performance greater than Pavg and 0.1 otherwise. 147
This nonbinary, yet discrete signal accurately reflects baseline reward signal or tonic dopamine 148
transmission, though without the continuous nature of an analog reward signal. With M(t) defined 149
so, performance on the simple working memory task after 300s of training was measured. 150
Performance was calculated as the percent of time after training in which the network output was 151
within criterion 0.5 from the target function. With the nonbinary, yet discrete signal, the network 152
achieved 85% ± 11% performance compared to 93% ± 3% performance with the binary M(t) 153
modulatory signal (95% confidence level). While these performance levels are not significantly 154
different, the larger standard error with the nonbinary signal indicates that with M(t) = 0.1 or 0.9, 155
working memory emergence and performance are less consistent per trial and potentially more 156
vulnerable to random network configurations, chaoticity, and noise (Figure 3). This is likely 157
because the baseline discrete signal permits weight change even if performance is significantly 158
poorer than average, leading to inappropriate weight change and failure to converge to the target 159
output. 160

 161

 162

Figure 3. Comparison of network output (blue) and target function (green) with a binary 163
modulatory signal (left panel) or a nonbinary, but discrete signal (right panel). The red arrows 164

represent the end of training. 165

 166

3.2.2 Implementing an analog modulatory signal 167

In the brain, dopaminergic neurons fire with tonic activity, and their activity has been observed to 168
encode a sort of reward signal. More specifically, dopamine neurons have been recorded firing in 169
ways that represent a sort of “reward prediction error” [2]. This means roughly that upon 170
presentation of an unexpected reward, dopaminergic neurons will increase their firing rate above 171
baseline, while when a predicted reward is not observed, they will decrease their firing rate below 172
baseline. The model we investigated did not originally include an analog reward signal with 173
similar dynamics to dopaminergic neurons. Thus, we modified the model by changing the reward 174
signal to a function that approximated the behavior of the dopaminergic neurons. 175

In line with the original model, we thought of the average performance computed with a moving-176
average filter as being analogous to the predicted reward. Thus, at any time, the current “reward 177
prediction error” would be given by the difference between the current performance P and the 178
average performance 𝑃𝑎𝑣𝑔. We then used this difference as the independent variable in a linear 179
equation giving the reward signal. We set the intercept of this equation to be 0.1 to represent a 180
constant level of dopamine from tonically active dopaminergic neurons. We set the slope of the 181
linear function to be (0.9-0.1) = 0.8 to approximate the conditions imposed by the previous non-182
binary discrete reward signal. Finally, a nonlinearity was added in the form of a hard cutoff at 0: If 183
the linear function produced values below 0, it was artificial set to 0. The combination of a strict 184
lower bound, a nonzero baseline signal, and dynamics depending upon a difference between a 185
stored and observed variable make this function a reasonable approximation to the observe 186
behavior of dopaminergic neurons. 187

The network was successfully able to learn the working memory task using the “dopamine-like” 188
reward signal (Figure 4). Interestingly, the network showed a slight increase in performance 189
during the testing period compared to the original model. The model trained with the “dopamine-190
like” reward signal achieved a performance of (96.2 ± 0.99)%. This contrasts with the original 191
model which achieved a (93 ± 3)% performance. Thus, for the modified model, the performance 192
increased and the variation in performance decreased. 193

 194

 195

 196

 197

 198

 199

 200

 201

 202

 203

 204

Figure 4. Comparison between the network output after training and the working memory target 205
function when using an analog “dopamine-like” modulatory signal 206

 207

The analog reward signal we have described is not the only analog reward signal that could be 208
constructed. One obvious choice is the raw difference between the current performance and the 209
average (predicted) performance. For comparison, we used this raw difference to train a different 210
model to perform the working memory task. This new network was also able to successfully learn 211
the task, but a comparison of the network output of this raw performance difference network to the 212
output of the “dopamine-like” network show drastic differences. Namely, the raw performance 213

difference network consistently failed to follow the target function as precisely as the other 214
models. While the transitions were correct, the amplitudes and variances of the output signals were 215
very different and led to a poorer approximation. The figure below illustrates the differences seen 216
between the “dopamine-like” network and the raw performance difference network. 217

 218

Figure 5. Comparison of working memory emergence with a “dopamine-like” modulatory signal 219
(left panel) and a raw performance difference signal (right panel) 220

 221

One possible explanation for the apparent improvement in performance for the “dopamine-like” 222
reward signal could be based on the fact that a baseline reward signal implies that the weights are 223
changing if performance is not significantly worse than average. In this way, even when the 224
network performance dips slightly below average, the weights still change to explore new regions 225
of weight space. This contrasts with using the raw performance difference signal, in which the 226
weight change can be anti-Hebbian. This might imply that if training finds a set of weights that 227
lead to a relatively constant performance, then if the network tries to explore new regions of 228
weight space with poorer performance, anti-Hebbian learning will prevent the weights from 229
leaving that region. Thus, it is conceivable that using the raw performance difference signal 230
increases the probability of the network to fall into local minima. However, the constant weight 231
change of the “dopamine-like” reward signal allows the network to find more global minima so 232
long as performance is not significantly poorer than average, in which case the hard cutoff signal 233
of zero prevents further exploration. 234

 235

3.3 Development of a delayed non-matching to sample task 236

In order to examine biological relevance of our model with modified modulatory signal, we 237
conceptualized a behavioral working memory test called delayed non-matching to sample task. 238
The test consists of three phases: sample, delay, and test phase. During the sample phase, the 239
rodent is presented with a sample stimulus (e.g. a left lever). After the rodent presses the sample 240
lever, a food pallet is presented at the opposite side of the chamber (delay phase). After a short 241
delay, the sample stimulus (i.e. left lever) is shown again along with a novel alternative (i.e. right 242
lever). In this paradigm, the rodent is rewarded with food pallet for selecting the novel stimulus 243
(i.e. right lever). This delayed non-matching to sample task is a good behavioral assessment for 244
working memory emergence as it requires the animal to hold information about the sample 245
stimulus in the online workspace throughout the delay phase in order to correctly select the novel 246
stimulus during test phase (Figure 6). In our model, the sample stimulus and the novel stimulus 247
can be thought of as input 1 and input 2 respectively. During the sample phase, the network is 248
presented only with input 1, which has to be retained in the network’s working memory 249
throughout the delay phase. In the test phase, the network is presented with both input 1 and input 250

2. In order for network output to match the target function, the network has to correctly reject 251
input 1 and select input 2 during the test phase. 252

 253

 254

 255

 256

 257

 258

 259

 260

Figure 6. Schematic of delayed non-matching to sample task 261

 262

In the delayed non-matching to sample task, we first tested working memory using both the binary 263
and nonbinary, yet discrete modulatory signals M(t). With these signals, performance levels were 264
71% ± 5% and 72% ± 10%, respectively (confidence level 95%). These performance levels were 265
significantly worse than those with either discrete modulatory signal in the original working 266
memory task (p < 0.001). Thus, the network performed more poorly on the delayed non-matching 267
to sample task than on the original task. In particular, analysis of individual runs indicates that the 268
network was able to achieve correct output when one input stream was nonzero, but not when both 269
input streams were nonzero. The network was not able to retain information about the original 270
stimulus and switch its output when presented with the original stimulus and the novel stimulus. It 271
is possible that different types of network architecture or non-Hebbian learning rules could lead to 272
improved performance with the delayed non-matching to sample task. 273

 274

 275

 276

 277

 278

 279

 280

 281

Figure 7. Failure to converge to target function in the delay non-matching to sample task 282

 283

3.3.1 Implementing a delayed non-matching to sample task with a “go signal” 284

In an attempt to get the network to learn some version of the delayed non-matching to sample task, 285
we added a third input stream to serve as a “go signal.” The rationale for its inclusion was the 286
possibility that since in the original implementation of this new task, the individual input streams 287
require different outputs at different times, and that the network does not implement an explicit 288
temporal difference learning rule, the network was unable to differentiate the meanings of the 289
original input signals. We redesigned the task to present one pulse on one of the input streams, 290
followed by a pulse on the “go signal” stream. Upon this pulse, we directed the network to choose 291
the opposite value compared to the input stream. Thus, for every trial of this task, either original 292
input stream requires only one output at any time. A binary modulatory signal was used. 293

Unfortunately, the network performed even worse on this task. The figure below shows the 294
network output during and after training compared to the target function. 295
 296

 297
Figure 8. Comparison of network output and target function before (left panel) and after (right 298

panel) training with a go-signal delay non-matching to sample task 299
 300

Following 500 seconds of training, the network showed what appeared to be random noise 301
throughout the testing period. No evidence was seen for any state transitions that would be 302
indicative of the network trying to accomplish the task. Future work will have to investigate 303
whether there is a fundamental reason the network was unable to learn this task. 304

 305

4 Conclusions 306

This study examines working memory emergence using LSM framework. While several other 307
studies trained their recurrent neural networks using supervised paradigms, the current study used 308
unsupervised, reward-modulated Hebbian learning to examine working memory emergence in 309
recurrent neural networks. We first reproduced a model proposed in [1] and showed matching 310
target output in recurrent neural networks via reward-modulated Hebbian learning. 311

In addition, we replaced the binary modulatory signal used in to the original model [1] with a 312
nonbinary, but discrete signal that represented the dynamics of the networks more accurately. We 313
further modified the reward signal to reflect dopaminergic neurons’ “reward prediction error,” 314
where dopaminergic neurons increase their firing rate above baseline when an unexpected reward 315
is presented, and decrease their firing rate below baseline when a predicted reward is not observed. 316
To incorporate this behavior of dopaminergic neurons into our model, we implemented an analog 317
modulatory signal where, at any time, the current “reward prediction error” was given by the 318
difference between the current performance and the average performance on the task, though with 319
a lower limit of zero. We demonstrated that the our modified model with the “dopamine-like” 320
reward signal, compared to the discrete signals, led to increased performance and decreased 321
variation in performance on the original working memory task. 322

Finally, in order to further examine working memory emergence, we designed a behavioral 323
working memory test (delayed non-matching to sample task) and trained the network to learn it. 324
This task required the network to hold information regarding a sample stimulus (input 1) through 325
the delay period and select a novel stimulus (input 2) when both novel and sample stimuli are 326
presented during the test phase. However, we found that the neural network performed more 327
poorly on the delayed non-matching to sample task than on the original task: the network could 328
not achieve output matching the target function when two input streams were presented (i.e., 329
nonzero). Future studies will be aimed at determining what network architectures, modulatory 330
signals, or learning rules will facilitate the learning of the non-matching to sample task. 331

References 332

[1] Hoerzer, G.M., Legenstein, R., & Maass, W. (2014) Emergence of complex computational 333
structures from chaotic neural networks through reward-modulated Hebbian learning. Cerebral 334
Cortex 3: 677-690. 335

[2] Lak, A., Stauffer, W. R., & Schultz, W. (2014) Dopamine prediction error responses integrate 336
subjective value from different reward dimensions. PNAS 111(6): 2343-2348. 337

[3] Sussillo, D., and Abbott, L.F. (2009). Generating coherent patterns of activity from chaotic 338
neural networks. Neuron 63: 544-557. 339

